Ecology, Populations and Ecosystems, Cycles, and Evolution/EOC Review

Transfers and	Cycles	of Matter	&	Energy
---------------	---------------	-----------	---	---------------

. Fill in the blanks in this Carbon Cycle using the following terms:

atmosphere cellular respiration combustion photosynthesis
death and decomposition ingestion of food fossil fuels

2. Use the word bank below to fill in the blanks. Some words may be used more than once.

cellular respiration decomposition **ATP** CO2 solar chemical glucose During photosynthesis, atmospheric carbon in the form of ______ undergoes a chemical reaction and is now queose . This process transforms Solar energy. The processes of decomposition and Chemical cellular respiration both release CO2 _ back into the atmosphere from the biomolecule <u>alucoce</u>. This process also transforms <u>chemical</u> or chimical energy. into ATP

3. In the atmosphere, nitrogen atoms are lare not (circle one) useful to plants. Explain your answer.

Nz gas must be "fixed" by bacteria so its in a form plants can use.

Using a colored pencil add onto the above Carbon Cycle picture the following parts of the Nitrogen Cycle:

N	Nitrogen fixation Bacteria		Assimilation	Denitrification
N	₂ NH ₄	NO_3		

Population Density, Limiting Factors, Population Graphs

5. Use the words in the bank below to fill in the blanks. You may use some words multiples times or not at all.

resources logistic predation increase decrease competitors exponential

In a healthy ecosystem, populations would grow at a/an <u>exponential</u> rate when they have adequate <u>resources</u> and no <u>predation</u>. Once the population reaches a limit, it would experience <u>logistic</u> growth. Two such factors that would limit growth include <u>Competitors</u> or <u>predation</u>. An increase in lions would lead to a/an <u>decrease</u> in zebras and a/an <u>Macrease</u> in grass.

Alternatively, an increase in disease that infects lions would lead to a/an <u>decrease</u> in lions, a/an <u>increase</u> in zebras and a/an <u>decrease</u> in grass. Since lions and hyenas both eat zebras, they are considered <u>competitors</u>. In this case, an increase in hyenas could lead to a/an <u>decrease</u> in lions.

6. In the space below, draw a simple food web showing the flow of energy and matter through the African Savannah ecosystem that has the following organisms: Grass, zebra, lions, hyenas.

Grass -> Zebras hyenas

- 7. If decomposers were not in the food web in question #6, the <u>Carbon</u> and <u>nitrogen</u> (hint, two important atoms) in the biomolecules may never return to the <u>otwos phere</u> to be cycled again into and out of living organisms.
- 8. The graph to the right shows the zebra and lion population for the first 5 years of a scientific study. Complete the graph with your prediction for the sizes the two populations for the next 35 years. Neither population goes extinct.

Evolution by Natural Selection

					and the same of th	
alleles	for existence	common ancestor	differential surviva	al and reproduction	genetic varia trait	tion
reproduc		embryology		offspring	survive	gradual
and r	result in a new	and create new <u>all</u> traits	eles The If and rep	etions in the copying of se changes can be inhoused this trait is beneficial roduce.	erited by futur l, it can allow	e generations the offspring
10. The	cladogram/evo	old result in a new spolutionary tree to the	right shows that	Hagfish Salamande Perch	Lizard Pigeon M	Fur;
DNA MI	A, anatomical s	nat would have the main imilarities, and embrand chimp	ryos would be		Claws or nail Jaws	mammary glands s
12. Evid	dence from <u>M</u>	mbryology	shows the si	milarity in unborn, de	veloping embr	yos.
		organisms and show	-	es homologous (same or.) structures	
14. Exai	mining the foss	il record for a single	species showg	rodual	changes thr	ough time.
15. The	four factors for	r evolution by natura	d selection state that	t there must be:		
gopu repre com	netic Variulation. Over poduce. St	ation production of ruggle for exi	offspring stence survival + re	that results in different	not every baby esources are lin	survives to miting. This
111011		To hopermuon over n				

